首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34734篇
  免费   3925篇
  国内免费   1913篇
电工技术   2375篇
技术理论   2篇
综合类   3769篇
化学工业   1450篇
金属工艺   1015篇
机械仪表   3138篇
建筑科学   1760篇
矿业工程   1126篇
能源动力   6462篇
轻工业   525篇
水利工程   1230篇
石油天然气   2682篇
武器工业   1218篇
无线电   4623篇
一般工业技术   4226篇
冶金工业   462篇
原子能技术   345篇
自动化技术   4164篇
  2024年   61篇
  2023年   396篇
  2022年   899篇
  2021年   948篇
  2020年   917篇
  2019年   795篇
  2018年   831篇
  2017年   973篇
  2016年   1098篇
  2015年   1095篇
  2014年   1821篇
  2013年   1677篇
  2012年   2406篇
  2011年   2798篇
  2010年   2138篇
  2009年   2256篇
  2008年   1893篇
  2007年   2633篇
  2006年   2480篇
  2005年   1945篇
  2004年   1700篇
  2003年   1520篇
  2002年   1156篇
  2001年   1037篇
  2000年   970篇
  1999年   774篇
  1998年   636篇
  1997年   537篇
  1996年   437篇
  1995年   375篇
  1994年   285篇
  1993年   281篇
  1992年   220篇
  1991年   157篇
  1990年   126篇
  1989年   113篇
  1988年   68篇
  1987年   32篇
  1986年   13篇
  1985年   11篇
  1984年   18篇
  1983年   6篇
  1982年   13篇
  1981年   4篇
  1980年   4篇
  1979年   8篇
  1978年   3篇
  1976年   3篇
  1959年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
航空发动机排放的非挥发性颗粒物(nvPM)是大气污染的重要来源之一,对人体健康会造成一定的影响。在采样测量过程中会有一定量的损失,为能够更便捷高效地计算排放损失校正因子,该文结合CFM56-7B26/3型发动机排放数据和美国汽车工程师协会(SAE)排放测量校正因子建议标准改变计算流程,开发出一套计算工具。结果显示,新计算工具计算的数量浓度排放校正因子与发动机推力呈负相关,在推力为100%的额定推力下,数量校正因子最小,在推力为3%(慢车状态)处最大,与原方法结果趋势相同,且最大绝对误差为6.81,最小为0.64;质量校正因子也与发动机推力呈负相关,与原方法结果最大绝对误差为0.14,最小为0.007。新计算工具能够更好地与实际数据和推力相联系,在与原方法差异不大的情况下,能够实现更高效便捷的损失校正因子计算。  相似文献   
82.
The purpose of the present paper is to investigate the hydrogen injection strategy on the combustion performance of a natural gas/hydrogen rotary engine. Considering that apex seal leakage (ASL) is an inevitable problem in the actual working process of a rotary engine, the action of ASL cannot be ignored for an in-depth study of its combustion performance. Therefore, in this paper, a 3D dynamic simulation model that put the effect of ASL into consideration was established. Furthermore, based on the established 3D model, the combustion process of a natural gas/hydrogen rotary engine under various hydrogen injection angle (HIA) and hydrogen injection timing (HIT) was investigated. The results indicated that the hydrogen jet flow first impacted on the rotor wall after entering the cylinder, and then diffused under the action of the vortexes in the cylinder. Therefore, the HIA and HIT could change the hydrogen distribution by changing the hydrogen impact location and the intensities of the vortexes in the cylinder. In addition, the ideal hydrogen distribution at the ignition timing which could improve the combustion efficiency was given. That is, under the premise of ensuring minimized hydrogen leakage, the hydrogen should mainly distribute in the middle and the front of the cylinder, and a high hydrogen concentration is maintained near the spark plug.  相似文献   
83.
The cyclic variability in a spark-ignition (SI) engine is examined fueled with methane/hydrogen blends with the use of an in-house computational fluid dynamics (CFD) code. A recent methodology is followed, which has been developed with the main aim at providing accurate predictions of the coefficient of variation (COV) of the indicated mean effective pressure (IMEP) in a fraction of time. Instead of simulating several tens of engine cycles, the methodology is based on the numerical results obtained from just 5 cycles, which are then processed for developing suitable fitted correlations of the main parameters as a function of a normalized distance. The latter expresses the distance of the spheres of the initial flame within the computational cell at the spark-plug region with the local turbulent eddy, and provides a smooth transition from the laminar burning regime to the fully turbulent one. This sub-model is included in the ignition numerical approach and is applied here in a SI engine with 3 different hydrogen contents, 10%, 30% and 50%, and three equivalence ratios, 1, 0.8 and 0.7, showing that the COV of IMEP is well predicted compared to the available measured data. Other parameters of engine cycle variations are also examined, such as the distribution of the IMEP. The variability of NO (nitric oxide) emissions is also examined, showing that for the stoichiometric cases it follows a distribution similar to a normal (Gaussian) one, while for lower ratios it is positively skewed. Overall, the methodology seems to provide reliable results for the whole range of the operating conditions examined, while the next steps of this activity will focus on similar cases for engine with variable speed and load, with the final goal to include additional mechanisms that contribute to the engine cycle variations.  相似文献   
84.
The present paper strives for optimization of the cooling system of a liquid‐propellant engine (LPE). To this end, the new synthetic metamodel methodology utilizing the design of experiment method and the response surface method was developed and implemented as two effective means of designing, analyzing, and optimizing. The input variables, constraints, objective functions, and their surfaces were identified. Hence, the design and development strategy of combustion chamber and nozzle was clarified, and 64 different experiments were carried out on the RD‐161 propulsion system, of which 47 experiments were approved and compatible with the problem constraints. This engine used all three modes of cooling: the radiation cooling, the regenerative cooling, and the film cooling. The response surface curves were drawn and the related objective function equations were obtained. The analysis of variance results indicate that the developed synthetic model is capable to predict the responses adequately within the limits of input parameters. The three‐dimensional response surface curves and contour plots have been developed to find out the combined effects of input parameters on responses. In addition, the precision of the models was assessed and the output was interpreted and analyzed, which showed high accuracy. Therefore, the desirability function analysis has been applied to LPE's cooling system for multiobjective optimization to maximize the total heat transfer and minimize the cooling system pressure loss simultaneously. Finally, confirmatory tests have been conducted with the optimum parametric conditions to validate the optimization techniques. In conclusion, this methodology optimizes the LPE's cooling system, a 2% increase in the total heat transfer, and a 38% decrease in the pressure loss of the cooling system. These values are considerably large for the LPE design.  相似文献   
85.
The aim of this paper is to illustrate the design of a new wave energy converter, composed of a point absorber and a hydraulic system (power take off) and sized for recovering energy in calm seas from waves near the shore. The point absorber is consisting of a rectangular shaped buoy integrating a piston pump. The set buoy‐pump oscillates under the waves action and moves natural water in a closed circuit hydraulic system (power take off) composed of a piping connecting the piston pump itself, a pressurized reservoir, a hydraulic turbine and a discharge tank. The methodology adopted for designing the main constituents involves a 1D mathematical model, settled for understanding the motion of the buoy under the hypothesis of regular waves and fully developed sea, and a sizing procedure applied for the design of all the components of the hydraulic system. The project related to the Calabrian site of Cetraro (Mediterranean Sea—south Italy) led to designing a system with a 4 m large buoy, associated with a small 13 cm diameter micro Pelton turbine, so that more than 22 000 kWh could be recovered in a year.  相似文献   
86.
Pre-detonators are commonly used in rotating detonation engine (RDE) experiments. Current experimental studies focus on the performance of pre-detonator while ignoring the influence of pre-detonator on the flow field. In numerical simulations one-dimensional detonation wave is usually used to ignite the fresh gas in RDE. This is a simplification of the pre-detonator used in practical hotfire tests. But the coupling between the pre-detonator and the combustor is ignored. The aim of the present study is to study the influence of pre-detonator on the flow field in the RDE. A model of RDE with a pre-detonator is built, in which three-dimensional numerical simulations fueled with hydrogen/air is performed. The influence of pre-detonator on the combustor in different stages is studied. After initiation, detonation wave from the pre-detonator forms two counter-rotating detonation waves. The tangential installation of pre-detonator fails in directional initiation of detonation wave. The coupling effect is shown as the reflection and expulsion of shock wave. Detonation wave or oblique shock wave in the combustion chamber enters the pre-detonator and turns into shock wave before colliding with the end and re-entering the combustion chamber. Under some circumstances, the reflected shock wave will initiate a detonation wave and affect the wave structure in the combustion chamber. In the stable stage, the reflected shock wave has no effect on the flow field. However, periodic collision of reflected shock wave with detonation wave at the junction causes ablation in long-time experiments. Increasing the axial distance between pre-detonator and injection wall is expected to be a solution for the ablation problem.  相似文献   
87.
Low flame speed restrains engine efficiency and increases HC emissions in rotary engines. Hydrogen addition and turbulent jet ignition have a great potential in increasing engine performance as they increase fuel burning speed. In this study, the classical R13b-Renesis Wankel engine and a modified one with a turbulent jet ignition configuration are numerically investigated by using hydrogen as a supplement. Eccentric motion of the rotor was generated by using User Defined Function in ANSYS-Fluent software. Pure methane and methane blended with 3% and 6% hydrogen energy fractions were used as fuels in the calculations. Combustion was modeled by using reduced mechanism of hydrogen-methane combustion having 22 species and 104 reactions. The Wankel engine was simulated at 2000 rpm speed and partial load conditions. At first, classical engine configuration having two spark plugs was simulated with pure methane. Then, hydrogen blended methane simulations were conducted to investigate the benefits of the hydrogen addition. Similar procedure was applied for the turbulent jet ignition application. The results show that both approaches are effective on increasing the burning speed of the fuel. It is revealed that hydrogen addition increases the indicated mean effective pressure (IMEP) by 1.8% and 5.2% for 3% and 6% hydrogen fraction cases respectively in the classical engine. Turbulent jet ignition with pure methane increases IMEP by 4.7% compared to the classical engine. Hydrogen addition only in pre-chamber is effective as much as 6% hydrogen fraction of classical engine. As the burning speed is increased by the application of these methods, CO and HC emissions are reduced and NO emission is increased. It is concluded that benefits of hydrogen addition and turbulent jet ignition applications can be optimized for both reducing harmful emissions and increasing engine performance.  相似文献   
88.
Prism Signal Processing is a new recursive FIR technique offering rapid filter design and calculation. It has previously been applied to Coriolis mass flow metering to generate fast (48 kHz) flow measurement updates, facilitating for the first time the direct mass flow measurement of individual fuel pulses injected into a laboratory diesel fuel injection test bench. In this paper we describe an augmented sensor signal filtering scheme which enables rapid tracking of the desired mode of flow tube vibration while notching out undesired modes. The new scheme is applied to a gasoline injection test bench where the vibrational interference is greater than for the previously described diesel system due to increased hydraulic shock. The paper presents experimental findings which illustrate the further challenges to be overcome in order to achieve the goal of traceable direct mass flow measurement of individual fuel injection pulses. For example, when a fuel pulse is shorter than the resonant period of the flow tube, the observed phase difference appears to show dependence on the instantaneous phase of the flow tube vibration.  相似文献   
89.
The mixing process between the fuel and the incoming air is extremely important for the engineering implementation of the scramjet engine. In the current study, the vortex generator coupled with the oblique shock wave is utilized to promote the hydrogen mixing process in a supersonic crossflow. The configurations of the vortex generator are put into investigation, namely typical ramp, split ramp and ramp vane. Some parameters are provided to evaluate the flow field properties quantitatively. The obtained results predicted by the three-dimensional Reynolds-average Navier-Stokes (RANS) equations show that the method of shock wave/jet shear layer interaction coupled with the vortex generator can effectively improve the mixing efficiency. Different vortex generator structures all have great effect, especially for Case SR (split ramp), with the mixing efficiency raised by 36.27%. The streamwise vorticity plays an important role in the mixing process.  相似文献   
90.
Two-dimensional rotating detonation waves (RDWs) with separate injections of hydrogen and air are simulated using the Navier–Stokes equations together with a detailed chemical mechanism. The effects of injection stagnation temperature and slot width on the detonation propagation patterns are investigated. Results find that extremely high temperatures can lead to a chaotic mode in which detonation waves are generated and extinguished randomly. Increasing the slot width can reduce the number of detonation waves and finally trigger detonation quenching at a low injection stagnation temperature. But increasing the slot width can change the RDW propagation pattern from a chaotic to a stable mode under high injection temperature. Furthermore, the kinetic parameter τ (representing the chemical reactivity of the mixture) and the kinematic parameter α (representing the mixing efficiency of hydrogen and oxygen) are introduced to distinguish the RDW propagation patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号